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Selection of Muscle-Activity-Based Cost
Function in Human-in-the-Loop Optimization of

Multi-Gait Ankle Exoskeleton Assistance
Hong Han , Wei Wang , Fengchao Zhang, Xin Li, Jianyu Chen, Jianda Han , and Juanjuan Zhang

Abstract— Using “human-in-the-loop” (HIL) optimization
can obtain suitable exoskeleton assistance patterns to
improve walking economy. However, there are differences
in these patterns under different gait conditions, and cur-
rently most HIL optimizations use metabolic cost, which
requires long periods to be estimated for each control law,
as the physiological objective to minimize. We aimed to
construct a muscle-activity-based cost function and to find
the appropriate initial assistance patterns in HIL optimiza-
tion of multi-gait ankle exoskeleton assistance. One healthy
subject walked assisted by an ankle exoskeleton under nine
gait conditions and each condition was the combination of
different walking speeds, ground slopes and load weights.
Ten assistance patterns were provided for the subject under
each gait condition. Then we constructed a cost function
based on surface electromyography signals of four lower
leg muscles and select the muscle weight combination by
using particle swarm optimization algorithm to compose the
cost function with maximum differences between different
assistance patterns. The mean weights of medial gastroc-
nemius, lateral gastrocnemius, soleus and tibialis anterior
activity under all gait conditions are 0.153, 0.104, 0.953 and
0.145, respectively.Then we verified the effectivenessof this
cost function by optimization and validation experiments
conducted on four subjects. Our results are expected to
guide the selection of muscle-activity-based cost functions
and improve the time efficiency of HIL optimization.

Index Terms— “Human-in-the-loop” optimization, multi-
gait, ankle exoskeleton, muscle activity, cost function.

I. INTRODUCTION

NOWADAYS, wearable robotic devices, such as exoskele-
tons, have been widely used in military, medical and

other fields. They can be used in performance augmentation
of able-bodied individuals [1]− [5], rehabilitation training and
locomotion assistance [6]. However, there are a large number
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of tunable controller parameters that dictate their behavior and
their interaction with users in the devices, and it is a challenge
to identify the best parameters for each individual.

“Human-in-the-loop” (HIL) optimization has been
employed as a method to tune assistive device parameters on
a subject-specific basis [7]. It is the process of iteratively and
automatically generating exoskeleton assistance patterns to
minimize a physiological cost function while an individual is
using the device. Researchers have been able to obtain suitable
exoskeleton assistance patterns during normal walking and
have a significant improvement on walking economy by HIL
optimization [8]− [13]. Although the studies have differed in
their optimization algorithms and assistive device hardware,
most of them used metabolic cost as the physiological
objective to minimize because the amount of human energy
consumption can reflect whether exoskeleton assistances have
a positive effect on human during walking. For example,
Zhang et al. used an unilateral ankle exoskeleton to assist
plantar flexion during walking in HIL optimization and
reduce the metabolic cost of 11 subjects by 24.2 ± 7.4%
[9]; Ding et al. designed a bilateral hip exoskeleton which
reduced the metabolic cost of 8 subjects by 17.4 ± 3.2% [11].

Cost functions based on human metabolic cost require long
evaluation periods and contain substantial noise. An advanced
measurement system for metabolic cost is indirect calorimetry,
a method which estimates energetic cost using measurements
of oxygen consumption and carbon dioxide production. The
system usually comprises a flowmeter embedded in a rubber
mask that covers the nose and mouth, which will cause
discomfort if wearing the mask for a long time. While these
systems are widely used, they are ill-suited for continuous
use or long-term data collections, and current HIL opti-
mization protocols still require 2-4 minutes to estimate the
metabolic cost for each control law [7], [14]. Meanwhile,
previous studies showed that there were differences in optimal
exoskeleton assistance patterns obtained by HIL optimization
among different subjects and under different gait conditions
(different walking speeds, ground slopes and load weights)
[9], [11], [13], so it will take much time to get the multi-gait
suitable assistance patterns by HIL optimization based on
metabolic cost. Therefore, it’s necessary to explore whether
other physiological responses can be used as optimization
objectives. One reasonable choice is muscle activity, which
measured by surface electromyography (EMG) that reflects
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Fig. 1. Exoskeleton system. It includes a control system, a actuation system, transmissions and an ankle exoskeleton. (A) Control system and
actuation system, consisting of a off-board real-time controller, a AC servo motor, a planetary gear and a motor driver. (B) Transmissions. A flexible
unidirectional Bowden cable that is composed of a coiled-steel outer conduit and an inner rope is used as the transmission device between the motor
and the exoskeleton worn on the leg. A series spring is attached at the end of the rope to improve the transmission compliance. (C) A enlarged
schematic of the exoskeleton. (D) A photograph of the exoskeleton.

the energy consumption of muscle contraction. Steady EMG
signals can be obtained with data collection for less time than
using metabolic cost in each control law of HIL optimization.
Nowadays, EMG signals have been widely used to control
wearable robot devices [15]− [18], [27]], [28], [30].

Appropriate initial parameters of assistance patterns can
substantially improve the time efficiency of multi-gait HIL
optimization, and we can obtain them by firstly providing a
variety of fixed assistance patterns with the individual and
analyzing the changes of lower leg muscle activities under dif-
ferent assistance patterns for each gait condition. Meanwhile,
we can construct a muscle-activity-based cost function with
the experimental data.

Our goal was to construct a muscle-activity-based cost func-
tion in HIL optimization of multi-gait exoskeleton assistance
and to provide a reference for the initial parameters selections
of assistance patterns. We mainly focused on the lower leg
muscles around ankle joint. This study was expected to help
to evaluate exoskeleton performance and guide the selection
of cost functions in HIL optimization. The results can be
also used to improve the time efficiency of multi-gait HIL
optimization by providing a good initial parameter estimate.

II. METHODS

We firstly constructed a cost function on the basis of one
subject’s EMG signals of 4 lower leg muscles under different
ankle exoskeleton assistance patterns under 9 gait conditions
in TABLE I. We used statistical methods to identify the best
weighted combination of muscle activities that differentiate
different assistance the most. Then we recruited four subjects
and used our cost function to carry out HIL optimization under
different gait conditions to verify its effectiveness. Finally,
we calculated cost function values under all gait conditions to
provide a reference for the initial parameter identification of
assistance patterns. All participants were provided with written
informed consent before completing the protocol, which was
approved by the ethical committee of Nankai University.

TABLE I
NINE GAIT CONDITIONS IN EXPERIMENTS

A. Exoskeleton System

We built an ankle exoskeleton system, including a off-board
real-time control system and actuation system, a Bowden cable
transmission with a series spring, and an ankle exoskeleton that
interacted with the human foot and shank (Fig. 1).

We used a real-time control system (DS1202, dSPACE,
Paderborn, GmbH) to sample sensors at 5000 Hz. The
motor unit consisted of a AC servo motor, a 5:1 plane-
tary gear and a motor driver (BSM90N-175AA, GBSM90-
MRP120-5 and MF180-04AN-16A, ABB, Zurich, Swiss).
The high-level controller was used to determine the desired
torque. The low-level controller commanded desired motor
velocity (Fig. 1A). A Bowden cable that was composed of
a coiled-steel outer conduit and an inner rope was used as the
transmission device between the motor and the exoskeleton.
A series spring was attached at the end of the rope to
improve the transmission compliance (Fig. 1B). The exoskele-
ton end-effector exerted forces on the front of the shank below
the knee, beneath the heel, and on the ground beneath the toes,
which produced the ankle plantar flexion torque. A Wheatstone
bridge consisting of four strain gauges that were fixed on a
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titanium level behind the heel measured the tension in the drive
rope. The exoskeleton was integrated with a running shoe.
A footswitch was installed on the sole to sense the instant of
heel strike at the beginning of the gait cycle. There was a rope
placed to the bottom of the shoe to lift the heel when providing
assistive torque. Two digital optical encoders (E5, US Digital,
WA, USA) were installed on motor shaft and exoskeleton joint
shaft respectively to measure motor position and ankle joint
angle (Fig. 1C, 1D).

B. Torque Control

We defined the desired exoskeleton plantar flexion assistive
torque curve as an unimodal curve (Fig. 2B) by mimicking
the human internal joint moment (Fig. 2A). This method of
emulating human torques had been used and proved effec-
tive in multiple prior publications [9], [13]. The curve was
constructed using four parameters: (1) peak time tp , that was
normalized to stride period and referred to the time when the
exoskeleton provided the maximum assistive torque; (2) peak
torque τp , which referred to the maximum assistive torque
provided by the exoskeleton; (3) rise time tr ; (4) fall time t f .
One previous study showed that tr and t f had less obvious
influence on the assistance effect of exoskeleton [9], so we
took tp and τp as the main assistance parameters and set tr
and t f as the average optimization results of 11 subjects in
[9]: 22.8% and 11.7%, respectively.

The desired assistive torque was tracked using a combina-
tion of proportional control, damping injection and iterative
learning. The torque control method did not rely on explicit
models or integration, which made it suitable for the complex,
nonlinear and time-varying dynamics of human interaction
with exoskeletons during walking [9]. The desired motor
displacement �θm,des (i, n) and commanded motor velocity
θ̇m,des (i, n) were defined as follows [15], [16]:

�θm,des (i, n) = �θ L RN
m,des (i + D, n) − K p · eτ (i, n)

−Kd · θ̇m (i.n)

�θ L RN
m,des (i, n + 1) = β · θ L RN

m,des (i, n) − Kl · e f lt (i, n)

e f lt (i, n) = (1 − μ) · e f lt (i, n − 1) + μ · eτ (i, n)

θ̇m,des (i, n) = 1

T
· �θm,des (i, n) (1)

where i is the time index or number of control cycles elapsed
within this stride. n is this stride and n + 1 is the next stride.
D = 0.018 s is the time delay between commanding and
achieving a change in motor position. K p = 8 is a proportional
gain and Kd = 0.05 is a damping gain. eτ = τ − τdes is
torque error, τ is measured exoskeleton torque and τdes is
desired exoskeleton torque. θm is measured velocity of the
motor pulley. T = 0.05 s is a gain related to the rise time
of motor. The controller used the torque error of each step
to update the feed-forward trajectory of the desired motor
displacement next step. β ∈ [0, 1] is a weight on the learned
trajectory. Kl = 0.05 is the iterative learning gain. Noise in the
error signal leads to improper updates on the learned trajectory,
which can excite unstable ripple formation. It can be reduced
by filtering the error signal. e f lt is the filtered torque error

Fig. 2. (A) The human internal joint moment during a single gait cycle
of ankle in sagittal plane. (B) Parameterization of ankle exoskeleton
assistive torque. The assistive torque curve is defined by peak time, peak
torque, rise time and fall time.

TABLE II
EXPERIMENT SEQUENCE

trajectory, and μ ∈ [0, 1] is a weight of learned error. The
value of β and μ was 1 in experiments.

C. Experimental Protocol

In cost function scanning experiments, we designed four
groups of exoskeleton assistance walking experiments, includ-
ing Level Walking EXP, Uphill Walking EXP, Loaded Walking
EXP and Incline Walking EXP. (TABLE II). Each group of
experiment was completed continuously and the interval of
two groups was at least 48 hours to avoid the influence of
fatigue. The walking speed and ground slope were changed by
adjusting the speed and tilt angle of the treadmill, respectively.
In Loaded Walking EXP, the subject wore a weighted running
vest, and the load weight was evenly distributed in the front
and back of the trunk.

One subject (male, 23 years, 180 cm, 58 kg) wore a right
ankle exoskeleton and walked on a treadmill under ten differ-
ent assistance patterns: zero torque (ZT), and combinations of
three tp and three τp levels (Fig. 3, p1 to p9) under each gait
condition. According to previous studies, the ankle push-off
time of most healthy subjects was between 45% and 53% of
stride period [18], [20]. Therefore, we set the three tp as 46%,
49% and 52% of stride period, respectively (early, middle and
late tp), which could distinguish different assistance patterns
and were close to the optimal tp in previous studies [9].
Considering that too high τp may lead to discomfort during
walking, and assistance effects may not be obvious if τp was
too small, we set the three τp levels as 20, 35 and 50 N·m (low,
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Fig. 3. Ten exoskeleton assistance patterns provided for the subject
under each gait condition. ZT is zero torque. p1 to p9 is the nine
exoskeleton assistance patterns (tp / τp: 46 / 20, 46 / 35, 46 / 50, 49
/ 20, 49 / 35, 49 / 50, 52 / 20, 52 / 35, 52 / 50, % Gait cycle / N·m).

medium and high τp) after doing the preliminary experimental
test and training.

We used a wireless EMG system (Bagnoli, Delsys, MA,
USA) to measure sEMG signals of four lower leg muscles
(medial gastrocnemius: mGAS, lateral gastrocnemius: lGAS,
soleus: SOL and tibialis anterior: TA) on the exoskeleton
side. The four muscles we chose are mainly responsible for
the plantarflexion and dorsiflexion movements of ankle joint.
We placed EMG sensors in strict conformity with human
anatomy, and we used stickers and bandages to make full
contact between EMG sensors and the skin surface to avoid
sensors falling off or losing contact with the skin during
experiments. The wireless EMG system avoided the long-time
wearing process and it only took about 5 minutes to wear EMG
sensors. The original EMG signals passes through successively
a 2nd-order Butterworth high-pass filter (cut-off frequency
of 20 Hz), a full-wave rectification and a 2nd-order Butter-
worth low-pass filter (cut-off frequency of 10 Hz). In each
group of experiment, all EMG amplitudes after preprocessing
were normalized by the maximum under 30 assistance patterns
(3 gait conditions × 10 assistance patterns). Our previous
study showed that the root-mean-square (RMS) of EMG
signals were well corrected with both mean and max values
[21]. Meanwhile, it was recognized that a relatively linear
relationship existed between RMS and muscle force [32],
so RMS of EMG signals were selected as the primary index
to estimate muscle activities. We used One-way Analysis of
Variance (ANOVA) to analyze whether muscle activities under
9 assistance patterns reduced significantly compared to zero
torque for each gait condition, and the significance level was
set α = 0.05.

Before experiments, 3 minutes was used to allow par-
ticipants to getting used to wearing exoskeleton and make
coarse estimation of tp and τp ranges. In formal experiments,
the subject firstly experienced zero torque pattern, and then
was provided with 9 different assistance patterns in a random
order. All patterns lasted for 2 minutes to ensure stable muscle
activities and we recorded the measured data of the last 60 s
in 2 minutes. The results are shown in Fig. 4.

D. Muscle-Activity-Based Cost Function

Using the EMG signals of four muscles under different
assistance patterns, we constructed a muscle-activity-based

cost function for multi-gait HIL optimization:
C F = g1 · mG AS + g2 · lG AS + g3 · SO L + g4 · T A (2)

where, gi (i = 1, . . . , 4) are the muscle activity weights that
need to be optimized and mG AS, lG AS, SO L, T A are RMS
of EMG signals of four muscles in each gait cycle. EMG
signals need be normalized by the maximum under zero torque
condition.

When optimizing the muscle weights, we first set four mus-
cles the same ranges of weights: g1, g2, g3, g4 ∈ [0, 1]. Con-
sidering the biomechanics and previous studies, GAS and SOL
are mainly involved in human walking, running and jumping,
so exoskeleton assistances maybe have a positive effect on
the reduction of their activities, while TA is mainly used for
dorsiflexion during walking, and uncomfortable exoskeleton
plantarflexion assistance will increase its activity. Therefore,
we set g4 ∈ [−1, 1] to maximize the difference between
different assistance patterns.

There must be significant differences between the CF
value in Eq(2) under different assistance patterns. Therefore,
we desiged the optimization objective function from the per-
spective of statistics to get the optimal muscle activity weight
combination. We expressed the cost function by matrix:

Jm = [g1 g2 g3 g4] ·

⎡
⎢⎢⎣

mG AS1 · · · mG ASn

lG AS1 · · · lG ASn

SO L1 · · · SO Ln

T A1 · · · T An

⎤
⎥⎥⎦ (3)

where mG ASn , lG ASn , SO Ln and T An are RMS of EMG
signals of four muscles in the nth step. Jm is 1 × n vector
depositing cost function values under each assistance pattern.
For each gait condition, m = 1, . . . , 9 (except zero torque) and
36 P-values (

∑8
i=1 i = 36) were obtained by pairwise com-

bination independent-samples t-test for J1 to J9. The average
of logarithms of 36 P-values was used as the optimization
objective J:

minimize J =
∑36

j=1 lg(Pj )

36
(4)

For the nine gait conditions we set, we all used particle
swarm optimization algorithm to minimize the objective J and
obtained the optimal muscle activity weight combination. For
NW and UW12, we took the average of multiple experiments
as the final results under this gait condition. Finally, We used
the average of weight combinations under nine gait conditions
as the final weight combination in optimized cost function.

E. Verification

We recruited four subjects to participate in validation exper-
iments under four different gait conditions. The validation
experiments included two parts: HIL optimization and results
validation.

Covariance Matrix Adaptive Evolution Strategy (CMAES)
is stochastic, derivative-free, and it works for non-linear and
non-convex continuous problems, which are beneficial to our
issue, so we used it to minimize the cost function and obtained
the optimized assistance pattern. In our previous study, SOL
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Fig. 4. Lower leg muscle activities over the whole stride under different exoskeleton assistance patterns for all gait conditions. (A) Level Walking EXP.
(B) Uphill Walkling EXP. (C) Loaded Walking EXP. (D) Incline Walking EXP. Muscle activities were normalized by the average of the 30 maximum
values of muscle activities under 30 assistance patterns in each experiment. Bars and whiskers are means and standard deviations of muscle
activities in all steps. ∗ represents that muscle activities reduced significantly compared to zero torque.

activity reduced more significantly compared to other muscles
[21], and our ankle exoskeleton mainly replaced SOL con-
traction during walking. Therefore, we carried out validation
experiments by comparing the results of HIL optimization
based on the optimized cost function which was muscle

activity weighted sums (CF-MAWS) with those based on only
SOL activity (CF-SOL).

The optimization time was a key problem in HIL opti-
mization, and previous studies had also confirmed that longer
optimization time was not necessarily better, because subjects
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TABLE III
THE MUSCLE ACTIVITY WEIGHT COMBINATION IN COST FUNCTION

OBTAINED BY PSO

were prone to fatigue, resulting in the changes in physical
responses [9]. Therefore, we should choose the optimization
time as short as possible. We tried to carry out CMAES
optimization for 4 generations, which can achieve the desired
effects. In each HIL optimization, we set the initial parame-
ters which the subject felt comfortable with. We expected
that the parameters were not far away from the optimum,
so 4 generations of CMAES was sufficient for the optimization
of 2 parameters (tp , τp). The first generation was used to
sample and evaluate the space from initial guess. The second
generation was used to sample and evaluate the expanded
space in case the optimum was not within the initial space.
The third generation is expected to sample around the optimum
with fairly large variance. The fourth generation was used to
fine tune the estimation of the optimum [22]. An optimization
experiment took 24 minutes, and more generations may cause
muscle fatigue and affect the optimization results. Finally, each
HIL optimization was carried out for 4 generations and two
different optimized torques: OT-MAWS and OT-SOL can be
obtained by HIL optimization based on CF-MAWS and CF-
SOL, respectively.

In results validation, each subject experienced zero torque
condition and two optimized assistive torques OT-MAWS and
OT-SOL. To minimize the effects of adaptation and fatigue,
the subject experienced the three assistance patterns again,
but in the opposite order. All assistance patterns lasted for
2 minutes, and then the last 60 s of data were recorded. The
validation experiment of each subject was completed within
one day, during which the positions of EMG sensors were
unchanged. We verified the effectiveness of our cost function
by comparing the optimized CF value when the subject was
provided with OT-MAWS and OT-SOL in results validation.

III. RESULTS

The results of optimized muscle activity weight combination
are shown in TABLE III. The mean weights of mGAS, lGAS,

SOL and TA activity under all gait conditions are 0.153,
0.104, 0.953 and 0.145, respectively and the mean optimized
objective J is −9.363. The weight of SOL activity g3 reaches
its upper bound 1 under most gait conditions, while mGAS,
lGAS and TA activities have the lower weight. CF-MAWS
(optimized cost function) and CF-SOL can be expressed as:

C F − M AW S = 0.153 · mG AS + 0.104 · lG AS

+0.953 · SO L + 0.145 · T A (5)

C F − SO L = 0 · mG AS + 0 · lG AS + 1 · SO L + 0 · T A

(6)

where, mG AS, lG AS, SO L, T A are RMS of EMG signals of
four muscles in a gait cycle and EMG signals need be normal-
ized by the maximum under zero torque condition for a certain
gait condition. Using CF-MAWS and CF-SOL as the HIL
optimization objective, the obtained exoskeleton assistance
patterns of four subjects were: Subject1 under Normal Walk-
ing: OT-MAWS = [48.50%, 47.58 N·m], OT-SOL = [47.70%,
39.22 N·m]; Subject2 under Slow Walking: OT-MAWS =
[50.00%, 34.16 N·m], OT-SOL = [50.37%, 32.39 N·m];
Subject3 under Uphill Walking (12%): OT-MAWS = [47.59%,
45.85 N·m], OT-SOL = [47.56%, 40.50 N·m]; Subject4 under
Loaded Walking (5 kg): OT-MAWS = [50.27%, 33.89 N·m],
OT-SOL = [48.87%, 35.20 N·m] (Fig. 5A). Optimized CF
values of four subjects when they were provided with assistive
torque OT-MAWS were lower than those when they were
provided with OT-SOL. SOL activity were the same. Com-
pared to zero torque condition, optimized CF values under four
gait conditions reduced by 31.6%, 33.2%, 26.2% and 10.71%,
respectively (Fig. 5B, 5C).

From optimized CF value under different gait conditions
(Fig. 6), we obtained that the later tp under slow walking or
the earlier tp under fast walking will produce the better effect
of exoskeleton assistance. We also found tp may be earlier
with the increase of ground slopes and optimal assistance
parameters were not sensitive to the change of load weights.
For a certain gait, the drop amplitude of optimized CF value
reached the maximum mostly when the subject was provided
with the maximal τp (50 N·m) under three different tp.

IV. DISCUSSION

Our first goal was to provide a method of constructing
the muscle-activity-based cost function for multi-gait HIL
optimization. We used scanning experiments data of one
subject to get muscle activity weight combinations under
each gait condition, and then used the average result of
all gait conditions as the cost function for multi-gait HIL
optimization. The reason why one subject participated was that
the main purpose of this study was to reduce the experimental
scales as much as possible, since the scanning of multi-
gait, multi-assistance human responses took too long time (in
total over 300 minutes of walking assisted by exoskeleton)
and was not suitable for most participants, especially for
gait-impaired patients. Therefore, we firstly tried to construct
a cost function on the basis of single subject’s data. Then
we recruited other subjects and used our cost function to
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Fig. 5. Results of HIL optimization and results validation experiments of four subjects. (A) The optimized exoskeleton assistive torques in HIL
optimization. OT-MAWS and OT-SOL are the optimized torques obtained by HIL optimization based on CF-MAWS and CF-SOL, respectively.
(B) Optimized CF value when subjects were provided with zero torque (ZT), OT-MAWS and OT-SOL in results validation experiments. Bars and
whiskers are means and standard deviations of optimized CF values in all steps. (C) Soleus activity when subjects were provided with zero torque,
OT-MAWS and OT-SOL. Muscle activities are normalized by the maximum under zero torque condition under each gait condition. Bars and whiskers
are means and standard deviations of muscle activities in all steps. ∗ represents statistically significant differences between optimized CF value or
Soleus activity under OT-MAWS and that under OT-SOL (t-test, α = 0.05).

carry out HIL optimization under different gait conditions
to verify its effectiveness. In Fig. 5, optimized CF values of
four subjects when they were provided with OT-MAWS were
lower than those under OT-SOL, which showed that using
our cost function produced assistance patterns that reduced
more muscle activities and subjects felt more comfortable
with. Meanwhile, it also added to the proof that our proposed
cost function can be generalized to different subjects and gait
conditions.

From the PSO results in TABLE III, we found that SOL
activity weight reached its upper bound 1 under most gait
conditions, which showed that the difference of its activity
between different assistance patterns was the largest under
these gait conditions. From the biomechanical point of view,
SOL arises from the posterior surface of the tibia, fibula and
the deep calf muscles and its tendons join with gastrocnemius
to plantarflex the ankle [20]. The slow twitch fibers of SOL are
more than fast twitch fibers and SOL is resistant to fatigue so
as to involve in less intense sports such as standing, walking
and jogging [20], [23]. Therefore, when the plantarflexion
assistive torque was provided for ankle joint, it replaced the
contraction of SOL, resulting in the reduction of muscle
activities. This explanation also indicated that the exoskeleton
assistance torque was consistent with the biomechanics of
human walking.

mGAS and lGAS activities had the lower weights. Presum-
ably it was because fast twitch fibers of GAS are more than
those of SOL, and GAS are used for explosive activities with
great strength, such as weight lifting, sprinting and jumping,
but they seldom involves in walking. In particular, mGAS and
lGAS activity showed the higher weights under FW (g1 =
0.752, g2 = 0.479), indicating that the contribution of GAS to

human walking increased when fast walking, so the difference
of their activities under different assistance patterns was more
significant, which was consistent with our analysis.

The weight of TA activity g4 was positive or negative,
which showed that the subject maybe adopt different walking
strategies to adapt to the change of assistance patterns under
different gait conditions. g4 did not reach the lower bound
−1 (the minimum was −0.222), which indicated that the
range of g4 was feasible. When g4 was negative, we found
that the change trend of its activity under different assistance
patterns was opposite to SOL activity. Therefore, TA can be
regarded as a balance term in cost function. TA has antago-
nistic effect on exoskeleton assistance, and the application of
inappropriate slightly assistive torque may increase its activity.
However, the results in Fig. 4 showed that its activity reduced
significantly compared to zero torque (P < 0.05) when the
subject was provided with assistive torque with late tp under
SW and all assistance patterns under LW20. Accordingly, g4
reached the maximum under the two gait conditions (SW:
g4 = 0.841, LW20: g4 = 1). The possible reason was that
when slow walking, the subject was more relaxed so that it was
not necessary to quickly lift the foot to get a ground clearance,
and the late tp was more suitable for SW. Under LW20, muscle
fatigue slowed the footstep, which will weaken the antagonism
of TA to assistive torques from the exoskeleton.

Current HIL optimization protocols require around
2 minutes to estimate the metabolic cost for each control law
[7], [9], [14], so it will take at least 48 minutes to complete
CMAES optimization for 4 generation (6 control laws per
generation), and it is only in the case of two-parameter
optimization and single joint assistance. More parameters
and numbers of joint assistance will led to longer periods for
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Fig. 6. Optimized cost function value over the whole stride under different exoskeleton assistance patterns for all gait conditions. (A) Level Walking
EXP. (B) Uphill Walkling EXP. (C) Loaded Walking EXP. (D) Incline Walking EXP. Bars and whiskers are means and standard deviations of it in all
steps. ∗ represents that it reduced significantly compared to zero torque. Shadow represents that it is the lowest under this assistance pattern. The
numbers above the bars represent the reduction percentage of optimized CF value compared to zero torque.

HIL optimization, which is impractical for patients. EMG
signals need less estimation time (about 40 s) than metabolic
cost. We collected EMG signals for 60 s for each control law,
so using our cost function can reduce the time needed by
50% compared to HIL optimization based on metabolic cost.

Our second goal was to find the appropriate initial assistance
patterns in multi-gait HIL optimization, which will lead to less
optimization generation of CMAES. We calculated optimized
CF value with the mean weight combination [0.153, 0.104,
0.953, 0.145] to find the appropriate initial values of tp and
τp under different gait conditions (Fig. 6). In Level Walking
EXP, optimized CF value was the lowest in p9 (late tp , high
τp) under SW, and it reduced by 20.02% compared to zero
torque (the same below). While under FW, it was the lowest
at p3 (early tp , high τp), reducing by 28.71%. When walking at
normal speed, it was the lowest in p9 too, reducing by 32.53%,
but the difference between it in p9 and in p6 (middle tp , high
τp) was smaller, so the effect of assistance patterns with later
tp under slow walking or earlier tp under fast walking will be
better. In Uphill Walking EXP, with the increase of slope from
6% to 12%, optimized CF value changed from the lowest in
p9 to in p3, reducing by 29.87% and 30.63%, respectively.
Under UW6, there was little difference between the optimized
CF value in p6 and that in p9 (p6: 0.1839 ± 0.0151; p9:
0.1738 ± 0.0123), so with the increase of ground slope,
tp maybe earlier, but it depended on the subject’s walking
strategy. When the strategy of increasing the stride frequency
and decreasing the stride length was adopted to adapt to the
uphill gait condition, it may be necessary to set tp earlier.
On the contrary, tp should be later. In Loaded Walking EXP,
the change of load weights did not change the distribution
of optimized CF value under nine assistance patterns and it
was all the lowest in p9, with the reduction of 42.01% (NW),
25.96% (LW10) and 38.19% (LW20), respectively. Therefore,
assistive torque parameters were not sensitive to the change of

load weights. In Incline Walking EXP, when the subject went
up 12% slope at slow speed, normal speed and fast speed,
the lowest optimized CF value occurred in p9, p6 and p3,
reducing by 25.48%, 27.17%, and 29.24%, respectively. These
results suggested that tp may be the determinant of the effect
of exoskeleton assistance under multi-gait conditions.

From HIL optimization results in Fig. 5, tp of optimized
assistive torque was earlier (about 47%) under UW12, while
it was later (about 50%) under SW, which was consistent with
above conclusions. Meanwhile, it did not need too high τp

under SW. Under UW12 and LW5, the decrease of optimized
CF value under OT-MAWS was smaller than that under NW.
We did not choose high enough slopes and load weights,
so optimized CF value may have a higher decrease under gait
conditions with higher slopes and load weights.

V. CONCLUSION

We presented a method to construct a muscle-activity-
based cost function and used it to provide a reference for
the initial parameter identification of assistance patterns in
HIL optimization of multi-gait ankle exoskeleton assistance.
EMG signal over metabolic cost was selected to reflect the
human performance to avoid long evaluation periods. We used
statistical methods to identify the best weighted combination
of lower leg muscle activities that differentiate different ankle
exoskeleton assistance the most. It provided evidence and
guidance to cost function selection in HIL optimization of
ankle exoskeleton customization under different gait condi-
tions. The results are expected to help improving the efficiency
of HIL optimization for lower-limb exoskeletons.

For future works, we plan to establish a more accurate
muscle-activity-based cost function by comparing the relation-
ship between metabolic cost and lower leg muscle activities
under multiple gait conditions, and we will recruit more
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subjects to carry out HIL optimization to build a multi-gait
optimal assistance parameter model of ankle exoskeletons.
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